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Fourier Transforms
Introduction

Many engineering problems lead to ordinary or partial differential equations which
have to be solved under various types of conditions formulated from the problem. We
are already familiar with the solution of higher order ordinary differential equations
with initial conditions (initial value problems) using Laplace transforms. Solution of
some partial differential equations with boundary conditions (boundary value problems)
can be obtained with the help of Fourier transforms.

@ Infinite Fourier transform (Complex Fourier transform) and inverse
Fourier transform

The infinite Fourier transform or sumply the Fourier transform of a real valued function
f(x) is defined by

FIF()] = [ flxye™ ax ()

provided the integral exists. Opn integration we obtain a function of . which is
usually denoted by F(u) or f(u)

A
The inverse Fourier transform of F (u) denoted by Fl[F(u)] or F_l[f( u)]
is defined by the integral

1 y —iux
5 [ Fuye ™ au O

On integration we obtain a function of x. That is

f(x) =F_]IP(M)] :2—17[ JF(H]L’_m‘rdu

— o

Note : (1) The definitions are deduced from the Fourier integral

oo

f(x)=i | [ reoye*t=9drdy
H = —o00

= P = —eo
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(2} Inview of the term ¢™ present in the definition of the Fourier transform, it is also

called the Complex Fourier transform.
| 2.3 | Properties of Fourier Transform
1. Linearity property
if Cp s €y, v oo €, are constants then

Fle fy(x) 46 fy+----+¢ f (x)]

= FUA (O T+ FLL () 14+ +¢, FIf, (x)]

Proof : By the definition,

Fle fi{x)+e, fo(x)+-- e, f(x)]

= j [le-l(l-)‘i‘fszz(x)—}—...+C”fﬂ{x)leih'xdx

o]

,[ f] (x) (?mx dx + €y J. f2 (1) [.’mxdx+ ce c, I f” ( x)gt'uxdx

— — o — oo

=c, FIAO )+, FIL(xy ]+ v FIf (x)]
2. Change of scale property
A . 1 A
FFLFGO L= fao, then tlfcan] = 27 4]
Proof : By the definition, ‘

Flf(ax)] = j Flav )™ dx

Put ax =t idx = di‘a and f also varies from — o0 to oo

Now Flf(an)]= [ feryene @

— oo

i 1
a

ie.  F[f(ax)]=- ff(r)f i =

Thus F{f(ax)]} = 1}‘(%)
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3. Shifting property
if F[f(x)]zﬁ(u)then F[f(x—a)]:efuaf(ts)

Proof : By the definition we have,

2 b fiex
feuy = FIf(o) ] = | fooed i

-— a0

Hence F{f(x-a)] = Jf(x—a)ci“'rdx

- oo

Put x—a =1 . dx = df t also varies from —e to e

Now F[f(xﬂa)] _ J’f{t)f.’i”(r-‘—ﬂ)df _ giua Jf(f)e””df _ Eiua}-\(u)

— ]

Thus F[f(x a)l = e”“’f(u)

4. Modulation property

Pl 1 A A
IFFIf(x)] = f(u)then Flf(x)cosax] = 5 [f(u+a)+f(u—a):]

Proof : By the definition

FIf(n)l = [ flxye™ax

J f(x)cosax ¢ dx

— o

F[f(x)cosax]

A9 inx
iux
e dx

ie.,

If(x}

Il

If(x)ei(“h?)xdx-k If(x)ef(u—a)xdx

— oo -

A A 4
[f(u+a)+f(u—a)J

1
2

o PRI

A A
Thus Flf(x)cosax] = [f(u+a)+f(u—u)]
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Fourier cosine and Fourier sine transforms
Inverse Fourier cosine and Inverse Fourier sine transforms

If f(x) isdefined for all positive values of x, we define the following

F. [f(x)] = If(x)cos ux dx = F (uy-- Fourier cosine transform
0
2 .
flx) = . I F (u)cos ux du - -- Inverse Fourier cosine transform
0
Flf(x)] = I f(x)sin ux dx = F(uy - Fourier sine transform
0
2 ‘ o
f(x) = - _[ FS (u)sin ux du--- Inverse Fourier sine transform
0

Note : The following properties concerning Fourier cosine and Fourier sine transforms can
eastly be established as in the case of Fourier transform.

1. Linearity property
‘Fc[C1f1(x)+fzf2(x)+---+cnfn(x)J
= f [AGI]rar, FACI IR ATACY
2. Change of scale property
If F.[f(x)] = F.(u) then Fc[f(ax)]:;- pc(%]

These two properties continue to hold good in the case of Fourier sine transform also.
3. Modulation properties
If FSIf(x)]:FS(u) and FCI_f(x)]zF((u)then

() F[f(x)cosax] [Fs(u+a)+F5(Is—a)}

(ii) F [f(x)sinax]

It

M= pajms N— po| =

(iii) F [f(x)cosax] ="

F (u—a}—FC(u-Fa)J
]

[
[F,(u+a}+l—“c(u—a) |
3

Gv)  F [f(x)sinax] P(u+a)~FS(u—a)J
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Proof :

o

(1] Flf(x)cosax] = If(x)cosax-sin ux dx
4]

= If(x)é- (sin(u+a)x+sin(u—a)x]dx

=

(==

If(x)sin(u+a)xdx+ If(x)sin(u—a)xdx
0 4]

N =

FIf(x)cosax] = ; [Fs(u+a)+Fs(u—a)]

=

(ii) F, [f(x)sinax] = jf(:r)sinax-sinuxdx
0

==l

= jf(x)-%[cos(u—a)x—cos(u+a)x]dx
0

=

jf(x)cos(u—a)xdx~ _[f(x)cos{u+a)xdx
0 Q

1

P | =

_Fc(u—a)—Fc(uﬂ-a)]

3| -t

Ps[f(x)sinmf] =

=]

(iii) Pc[f(x)cosax]— _[f(x)cosax-cosuxdx
0

_[f(x)--12[cos(u+a)x+cos(u*a)x]dx
0

oo

f(x)cos(u+a)xdx+ If(x)cos(u—a)xdx
0

N f e

" 1
DL—_.S

F [f(x)cosax]

% [Fc(u+a)+Fc(u—a)}
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(iv) Fc[f(x)sinax]z If(x)sinax-cosuxdx
)]

L

= _[f(.“()é {Sin(a+u)x+sin(a-u)x}dx

U

:% If(x)sin(u-#a)xdx— J‘f(x)sin{u—a)xdx
0

¢
F [f(x)sinax] = % [Fs(u-i-a)—Fs(u-a)]

Definitions at a glance - Infinite Fourier transforms

.. ._Type | Transform
Fourier transform o | - o |
_[f(x)e“”dJrzF(u) P IP(u)e_’”xduzf(x)

. P e -

cosine transform If(x) cosuxdy=F (u)

S 10 . e I ¢

Fourier = . o=
; sine transform - If(x}si“ uxdx=Fq(H);; I
. 0 “ 0

Note : Definitions in the altemative / equivalent form.

Inverse transform

i IFC(lt)cosuxdu = f(x)

F (u)sinuxdu = f(x)

Type | Tansform | Inverse transform

Fourier 1 = y oo

transform =~ 2 fux 4. — — SX g

N If(x)e dx (u) N IF(H)E’ du=f(x)

et T — i =

cosine V2/x J-f(x)cosuxdx=Fc(u) Nz _[Fc(u)cosuxduzf(x)

transform 0 0

Fourier sine : v o

transform | \2/n [ f(x)sinuxdr = F,(u) N2R | F (u)sinuxdu = f(x)
o N . 0
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WORKED PROBLEMS

1. Find the complex Fourier transform of the function

[c=]

- < ‘\'
flx) = Ljor [ x| <a Hence evatuate | 222 4y
0for |x] >a ;X

>> Complex Fourier transform of f{x) isgiven by

F(u) = _[ flxy &y

XY = ~oo

lfor-a<x<gy

a
- l B I"M'J.' d. , . -
¢ t since  f(x) {0 otherwise
X =-g

e.fl{.\f -l b . .
F(u)y = —- = — j et -
i in :

X = —-g

1 .. .. i
Flu)=_—_ ~'(cosau+rsmau)—(cosi:m—.fsma'u)l
il .

1 . 2sinau
= — (2isinau) = == =7
i u

Thus F(u) = 5517“?—“.
s1

nx
dx
X

Let us evaluate I
0

We have obtained F{u) = 355111}{?_1_-‘

‘I - n
Inverse Fourier transform is o IF( ) e "y = fix)

= =

i sinan  _ iy | Sin Al —
—— — dh‘ —_ -—- e

2r u ' n u

— o —oa

ie. flx) = elu

Now let us put x = 0.

Since x = 0 is a point of continuity of f(x), the value of f(x) at x =0 being
f{0) =1 because f(x) =1 for [x| €a

1 sin au .
Hence — I v du =1 since ¢ = 1
n

— o
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=]

2 sin a u . smau )
ie., 2| =224y =1, since — - - is an even function of u
m 54 i
0
sinau i
[ sinau,, =
i 2
0
A sin i T
Putting a = 1, — du =+
8 '[ u 2
0
. sinx m
Thusbychanging u to x, we have I T dx = 3
1]

2. Find the complex Fourier transform of the function

x, |x| €« . "
f(x) =144 x| where oL is a positive constant.
- 0, |x| >«

oo

>> F(u) = If(x) ¢ dx andbydata f(x)=xfor [x] <«

¥ = —=
o
= j x - ¢ dx
— 0
. . Q0
ftx X ]
=lx  — -1 — | , by Bernoulli’s rule.
it 2 uZJ
-
. 1 o
- [xgm_x:l - 53 [em}.:|
in -a 2,2 -
_ "t j o gim){_( a)e iuu} + 1 | A _ jua |
U 2
i
Also %% = cosua+isinuct, ¢ % = cosnuo—isinua.
AL ME 5 osna, M- MY = 2sinua
—i20cos U i2sinou
Hence F{u) = —————~ + 5"

u u

i o
Thus  F(u) = 2i [sm:(!lu _ cosau]
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1-2%, x| <1

3. If f(x) = { !

FI =0, e e

find the Fourier transform of f{ x ) and hence find the value of

(i) X€os X —sinx dx. {ii) J X COs X~ s X Cos * dx
0 o 0 o 2

- 1
g F(M)__.If(x)eflfl'dx:I(l_XZ)Eiuxdx’

oo -1

ftxy=0for |x| 21 and 1-x% for | x| <1

5 eiux inx _iux
F(u)=|(1-x )E— (—2x) i_z_u_2+ (—-2) 3.2 by Bernoulli’s rule.
=-1
_ _7 2. ux _ 3 Filed _ E[)iux
B u[(l x7)e J = -1 ui[x(' } = -1 > € ]x=-1
2 1 .1
(i"=-1, - =—-1, 7 =1)
i &
2 o I . .
F(u)="2(0-0)- 5 {1~ (-1)e - = (M- ™)
U H
2 fid — iy 2i i — in
=——F(e"+e ) —<{e"—¢ T}
u? 0w
But e = cosu+isinu, ¢ = cosu~isinu
e = 2eosu, - ™ = 2isinu
-4 4 si
Hence F{u) =" c;)su+ qu_;”
u 1w
Thus F(u) = 4 smu—;:cos_g_
u
X—sinx
Let us evaluate _[ %i dx
By inverse Fourier transform
1 F —[HY
f(x)=-2-&-IF(u)e du D)

—
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If x=0:f(x)= 1-0° =1 at x = 0. By putting x = 0 intheintegral and using
the expression of ()} we get

o

_ N
1 4(smu ucoqu O gy = £0) =
2n
Q} sinu—ucosu ., _ 2N _ 7
W 4 2

- o

Sin # — 14 cos u

—— becomes
i

If u ischanged to — 1, the expression

sin{—u)—-(—-u)cos{—u smu—ucoa,u . ..
( )=( ) { ——) ——5—-— itself. Therefore the function is even

3 3
(—u) u
and hence the integral from — < to oo is twice the integral from 0Qto .
SIN H — U COS U oo U COS U = Sin U T
——> du = 5 or I T du ~ 1
0 u 9 o
) Xcosx —sinx
Changing u to x we get I 3T dx ~ 4
X
0
XCos X —sinx X
Next, let us evaluate J——,.i CO8S 5 dx
; JE
Putting x = 1/2 in (1} we have,
g P 2
1 sin 1 — 1 cos 1 Voo C 10 1 3
— 4| ——" et du=f|si=1-| 5| =~
27[ “3 , 2 f:' 2 4
e 2 SiN K — 1 COS & t i U p 3
e, — —_— L — tsinz o= —
n W 2 2 4
Equating the real parts on both ~ides we get,
_[ sin it — 1 cos i cos i du = 3n
0 2 T8
Sint — i COS H i CH A . .
ie., 2 j — 3 sy di = g + since the integrand is even,

0 1
Dividingr by 2, changing the sign and writing x in place of u we get,

XCosx—sinx -3n
- . 0S8 dx =

¥ 2% 16
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4. Find the Fourier transformof f(x) = ¢~ | x|

>> Fourier transform of f(x) isgivenby F(u) = j F(x) AU

— oo

- ')_x ->
Here f{x)ze_|*| _ e for x > 0

¢ forx <0

O oo
F(u)= j R -[ ¢~ X o gy
- 0

0 ~
F(u) = I HAlri)x 00 j g (I=i)yx g

— e ]

R R S S
T 1+iu 1——.'.'11_1_1‘2”2_14_”2
2
Thus F(u) = ——
1+u

5. Find the Fourier transform of

1-|x| for | x} <1 7 sinlt .
f(x) :{ . and hence deduce that I : dt =
0 for [ x| > 1 1P 5
> Ff(0T= [ fear= [ 1-|x| édx
e -1
0 1
Flf(x}] = j [1-(-x)]e™ dx+ j [1-(+x)]™ dx

¥

1
= J.(1+x)[,f'i-‘xdx+ I(l_x)eiurdx
-1 ¢
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P

i e:'u.r e;‘ux 0 ( e“‘" L,fux i
FIfG) =] (1+x)7m = (1) ~ +(1-x) == = (-1) =3
iu .32 iu T3
L (i)™ ], L ()" |,
_ 1 1 it l 4 _1 d 1)
=5 (=0 (1= ™)+ (0-1) (@)
- 2 _ 1 (t’m-}-{.’“ iy 2  2cosu _ 2(1-cosu)
Wt / u? i w
4 sin” (u/2
Thus Flf(x)}]= —&(2-3‘---—---)- =F(u)
u

Now f(x) = 21_n ‘[ Fluye ™ dy, being the inverse Fourier transform.

— oa

fe,  flx) = | (__H/Z) {

1 ...'
— 5 ARl IY
21 L

— o

oa

.2
. 1 sin’ ( u/2)
e, fx) =50 £ (/2 )

e " du

Putting x = 0 wehave f({) = 1 by the definion of f{x ).

Lo Loqsin’w2)
2n (u/2)y
Put u/2 = diu = 24F and 1t also varies from — oo to e
e 2' «<
1 sin” f 1 sirf ¢
Hence, 1 = - j = -tz 2dt = . I --—rz— dt |
=2
or 1= 1-2 J §-m-2 f' dt, since the integrand is even.
4 0 !t
oo .2
sin” £ bit
Thus [3[ 2 dt = >
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6. Find the Fourier transform of

,
X, x| <a

flx) = where a ts a positive constant.
[) I | X | =
>> Fourier transform of f(x) is givenby F(n) = I fix) P gy

Since f(x) = x> for | x | < a by data, we have
i
F(u) = J e dx
— i

fux itix fnx

iu

2

a .. 2 2 ..

= (2isinau)+ , (2cosau) ~ 3 ( 2¢ sin qut )
i i

2a25mau dacosau 4 sinau
- u + - T
i t

1
Thus  F(u) =~ [Z(azuzﬂZ) sinau+4aucosuu}
"

7. Find the Fourier transformof f(x) = xc¢

_[f(:c]e"“'tdx

— oo

> Wehave F(u}=F[f(x)]

' x¢ Y for x > 0

0 fe+)
Flu)= jf(x)f,iifdi,+ J'f(x)c,r'r:xdx
i 0

0 v
X ux - X Ny
= I xe e dx + _[ xe tedx

— o ]

1 y 4 > s N 2 ) )
g 2 — - . -
ks [a G _ 2, um)+ rs (ae”‘”+as e L [Ema_e zuaj



132 FOURIER TRANSFORMS

0 [==]
Filu)= Jxe(-l+m)xdx+ jxe_(l_"”j'-rdx
. o

Applying Bernoulli’s rule to each of the integrals,
-

[ (l+nyx (1+m)x | i e—(l—iu)x E,—(]—Eu)x—r0
Flu)=1(x) — —(1) s o+ l(x) ——— (1) ———— |
L (1+iu) (1+iy | | —(1-iu) ( (l—iu)zjo
The first and third terms vanish.
-1 1
F(51)‘——(1—0) (0-1)
(1 +m) (l—mr)2
S W WG b A
(1—fu Y (1+iu) (1 + u%)?
Thus F(u)= 4”;2
A+u?)
8. Find the Fourier transform of
1+(x/a), —a<x <20
f(x)=:1-(x/a), 0<x<a
0 otherwise
>> F(u)y=Flf(x)] = J.f(x)ejurdx
a ] i
fe., F(u) = ‘[f(x)e”‘xdxz jf(x)e””dx+ Jf(x)ef"xdx
— 1 -7 0

[ i
I (1+xJ oM dy + I (1 ] e
a ; a

-

F{u)

1]
1
——
B
—
|F"'-
::| =
o
|
o
= | =
~
¥ M
oy =
Mld
| b
k=1
+
1
Eoa
f
SRR
R
=8
=l g
i
o
=1
p—t
A
- .

I
—
—
|
o
S
+
—
—
2
=1
—_—
—_—
=
—
g
|
Eala
Lt
=
=
—t
p—
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1 ST ! 1 __2(1—COS au)
= 2= (e | =

[~

7 2
9. Find the complex Fourier transform of ¢ © V', a > 0. Hence deduce that e * 2 i self

reciprocal tn respect of the complex Fourier transforn:.

S>> Fu) = FLA(o T = [ fixye™ax
- 2 - 2 Y
ie., F(u) = j e My j e - (x T dx
" gy L E “? !i.!.‘..
= .[ R 232+4,ﬁ_4a*)dx
Je—a (x— —m}) LY dx
i dt .
Put a|x=—— =t . dx = -- and f also varies from — oo tp oo
oy i
J
. o0 dt - Tz
Now F(u)=c¢ i/aa j et " and we know that _‘. e ldt =N
2 2
Thus F(u) = L;:— g /4a

Now taking @ = 1/2 wehave

2 2

[t can be seen that the Fourier transform of e~ ¥ 72 is a constant times ¢ ¥ /2

xzf"Z uzz’Z

The function ¢~ and ¢ are same but for the change in the variable.

2
Hence we conclude that ¢ * /2 js self reciprocal under complex Fourier transform.
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2
10. Find the inverse Fourier transform of ¢ U

. »> We have the inverse Fourier transform

] o
flxy =5 [ FGue ™
f(x) = % I e-—x,-z_e—;‘u_rdu - 21_“ I (.,—(1;2+iux) du
17 (Rany ir, B P
f(x):z I{,—(If+;.-:.r-2+ PR ] dis
o[
1 = _ o2 2
f(x)=£ _[c’ A R A !
ix .
Put u+ 5= t . du = dt and t varies from — e to e
2 o 2 2
-x /4 2 -x /4 x4
¢ ¢ e e
Hence xy= — e dt = N = —
F(x) 2 '[ 2n 257
—x'/4
Thus the required inverse Fourier transform is e
2Vn

11. Find the Fourier sine and cosine transforms of

x, 0<x<?2
flx) = {O, else where

>> The Fourier sine and cosine transforms of f(x) are given by

FAu)= jf(:r) sinuxdx and F_(u) = _[f(x) Cos ux dx

0 0
2
F(u)= Ixsim:xdx
U
_ 2
= [x : —C(;ﬁ -1 - S:;ﬂw bv Bernoulli’s rule.
0
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1 2 1 . 2
F(u)=- U [xcosux], + u_2 [smux]U

1 1
== (2cos2u-0) + — {sin2u -sin0)
{

sin2u—21ucos 2u

Thus F (u)= 2
2
Also I (u) = J‘ xcosuxdx
0
. 2
= {x smu_wc -1 - Cii ] by Bernoulli’s rule.
(}

1 X sin iix 2 + ! 2
= - = IRy
. [ ]U uz [ cos ]0

1
=0 (2sin2u-0) + -—15 {(cos 2u —cos ()
u

S ,
U 1w’

2 sin 2u . cos 21— 1

2usin2u+cos 2u—1
Thus F_(u)= " s :

12. Find the Fourier sine and cosine transforms of f(x) = ¢ %% o > 0

>> Fourier sine and cosine transforms are given by

=53]

Fs(u) = _{f{x}sinuxdr and Fou)= ff{_x)cosuxdx
0 0]

0
Fu)= _[e_w(sin ux dx
o
0
e
o 5 {— Gsin Hx— 1 cos ux)
(o) +u”

by using the standard formula,
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),[u- + .
. ¢ a sin bx — b cos by
J & oginbxdx = _____g__.____ - 5 __)
a“+ b

But e P 50 as x> oo, 0 = 1, cosO =1, and sin0 =0

o =]

Also  F (u) = If(x)cosuxdx = j ¢ Y cos ux dx

0 0
o O o 1 o
=| — 2+—2-(wacosux+u51mu)J =——2+ 5
(o) +u g @tu
T :
i A (g cos by + bsin bx
by using J'e”x cos bxdx = -t——g———,;------i- )
a +h
o
Thus F (u) = .
¢ a2+_u2
13. Obtain the Fourier cosine transform of the function
J' 4x, 0 <x <1
flxy=44-x, 1 «x < 4
{0, x > 4
>> Fourier cosine transform is given by
F(u)= [ fix) conunda
0
1 4 o
= ‘[f(x) cos ux dx + J-_f( xycosuxdx + _[f(x) cos Hx dx
0 1 4
1 4 v
FC( ) = I dxcosuxdx + j(4—x)cos:txd.r + IO - cos xdx
( ] 4

Applying Bernoulli’s rule to the integrals we have,
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sin ux

it

: 1
F (u)=|4dx- 31_%1__.*_{ —~ 4 ---EU?}M} + {(4—){)
1

0

{ﬁl}j_EcE‘EJ +0
1

MZ

_ 4 Ysinn\'1+--‘-1- 0% 14—1- (4—x)si T L 4
= — |2 Xl 2 | cosux ]y u[ ysinux || > [ cos ux ],

i
4 . . 4 1. . 1 ,
== smu.—(]j + = {cosu—1Y+ = (0—35111;;)— — (cos-‘-Lu-cosu)
oo / ”2 \ A H A\ T
. 4 ' 3 . 1
=~ siny + —5 cosu — -5 - —sinu - cosdu + — cosu
i u I u 1 ]
. 1 . S5cosu—4 1
Thus F (u) = — sin T = = - 08 du
¢ u u” u*

14. Find the infinite Fourier cosine transform of ¢

»> Fourier cosine transform is given by

j Fix) cos uxdv

F(__ (1) =
]
iy 2
F (u)= J e % cos uxdx

Q

Note :
integral sign.

Differentiating w.r.t. » using Leibnitz rule, we have

dF. "L 4/ 2
d_u: = 5% (e‘x cos tx ; dx
0
= j e_"'_(*sinux- ¥) dy = ; j i
0 0

df - T \
or - = _[ sinux:e * [ - ?_r) fdy
du 0 ~ L ;

Integrating R.H.5 by parts we have,
dF‘ I~ 2

2 = fLsinux (e *)

du

.

2
- Ie_'] (cosux - u) dx
1]

(1)

The integral is to be evaluated by using Leibnitz rule for differentiation under the

sin ux 1| e (=2x) i
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2
X

But ¢ " =0 as x > and sin0 =0
ch - 2 dFC
2 Tu =(0-0)-u Je COSs ux dx ot 2?;:—1{&
(]
. dl“(‘
ie., 2 F_{ = —udu
dF ¢ u , . )
or £ =7 du and integration vields
C
2
logF = % + log k, where log k is a constant.
(R R
Ie‘f Ob k J - 4 ( r _ﬁ_ - f_
Hence we have, F(u)= ke ! ca(2)

To find kletus put » = 0 in (1) and (2).

2 - 2
(1) gives F (0) = J.v Y cos0dx = Jc T dy
0

0 .
T2 m " Nn
But th de = ' andhence F (0) = .

Now putting # =0 in(2), F_ (0) =k & = k. From these we get k = VIU/2.
Thus by substituitng the value of k in (2) we have

2

F(u)y=(Vn/2)e"”

| x|

15. Find the Fourier sine iransform of f(x) =¢ and hence evaluate

o
I X SN X

5 dx, m > 0

0 1+x

>> Fourier sine transform is given by

F(u) = jf(x) sin rov dx
)]
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o

Fluy= j o ¥ ginuvdy = _[ ¢ “sinuxdy, since
) 0

-

x|

=X

s

x>0

r 1
L e (=1sinux—ucosux)’
FH(H}Zi NI
| ~ 1y +u :
] (=17 +u i
But ¢ ' S 0asx oo et =1 cos0 =1, sin0 =0
; u
Thus  F (u)= —;
1+n
By inverse Fourier sine transform we have
2 . i
" F (u) sinuxdu = f(x)
0
Le., “ , sSinwxdn = -E—f’(,r]
0 1 +u” -
Putting v = m where m > 0 wehave f(x)=¢ "l =¢ "
H oSN #i T —w
Jousnm T,
g Ltu
- , . Xsin My no-
Thus by changing the variable i to ¥, _[ oo dx = 5 € "
g 1+x
16. Find f(x) ifits Fourier sine transform is p' e ™, a > 0

>> Here F (p) = plhe T

By inverse Fourier sine transform
2 LI VIR
f(x) = o I pre “rsinpydp
p=10
.. C . — .
To evaluate this integral consider I oV sinpydp
I

A1)
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We know that j ¢

oo

Je

]

But

[==]

Wein by dy = -

o™ (asin bx—bcos bx)

oy
—AP i . =
" gin pxdp = |r E’_--_(._”f?‘_‘?;:!?___ i Cos Xp ) E
L (—ay+x JU

e 7 50 as p — oo, ed =1, cos0 =1, sin0 = 0

_ap . x

Hence J. e “Psinpxdy = ——
2 2

ac+x

0

Differentiating # times w.r.t # using Leibnitz rule,

qn = ~ T v
. J e "Psinpxdp = -t----?-?- ( B . 5 i
da 0 da Lr: +x° )
) r —up 0o _ ﬁl_’_r_ X
ie., ¢ "T{-p)ysinpxdp = — |, . (2)
0 da" | a4+ aT J
We can write
X ox 1 ‘ -1 1
Ayx? (atixy(a—ix) 2 la+ix  oa-ix)’
by resolving into partial fractions.
4 x y_-rd' 1 1T
da" a2+:er 20 g latix | 2 gy \_a—z’:rj
LSS ML S G S A
20 (qaixyttt 2 gyttt
Ty (=1 ata”
by using the formula fe | ——= i = (=1) wa
’ dx \ax+b | (axapyt!
. d" x (-1)" n! J -1 1
I.t?., —” 2 2 == 7 I -_-..__.‘_ _+ ] R ._.__._._-;.i
da a+x ) =t P {ad+ix i (a zx)”
. a7 o N (=1 ot . :
le., - [ 55| = —-——%--——— f—(a+tix) Cirt) g =iy (0t ) : ... (3)
+
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Putting a4 = rcos0, x = rsin B, we have

(a+ix)y (Tt 2 [r(cos®+ising)] (7D
=1rf_(”+”i_ccas(M+1)‘5}—.f'si1’1(1":'+1)9E - (4)

(a-ix) "D o [r(cos@—isinﬁ)]_{’”])
LAY cos(n+1)0+isin (n+1)0, )

(5) - (4) will giveus " {1

¥ - H !
a’ [_Xﬂ S Y

da” aZ e ?’” +1

-2 sin(n+1) 8 and by substituting in (3) we get

i

Substituting in (2)

_ ~1)" al
¢ ”F’(_l)” p” sinpxdp = L—-ni'l—n—sir\(lli—l)()
¥

or

o BT e §

- : nt
e “Pp'sinpxdp = L.p Sn(r+1)6
¥

Substituting this in (1), we have

2 !
flx) == fﬁ sin{n+1)8 where rcos0 = g and rsin® = x
v

3
Further we have ¢ = Va2+x“ and tan® = x /g
ul

Thus  f(x) = 2._.n vy SIN {(ﬁ+1)t:m_‘l [E]]

T (a2+x2) 2

17. If the Fourier sine transform of f(x) is given by I (u) = (n/2) e 2u find the
function f{x)
>> Bydata, F (u) = (n/2) e

By inverse Fourier sine transform,

flx) = :r% I F. (u)sinuxdu
0]
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flx)y =

)

T 2 .

J- ST M sin wx du
2

i}

:lx

. asin Eu - bx
But j P gin bxdy = s ousox)

Pl bz

|— {—ZSII‘IIH—YLOSUA]—|
flay =] ; |
L (—2) + X J”:
_1 - _
= [c 24 (2 ginxu + ¥ COS Xit ) i
4+1 =10
But % 50 as it oo, =1, cos0 =1, sin0 = 0
-1 . X
Hence f(x}= ———5- - {-x -
(4+x7) (4+x
. X
Thus  f(x) = 5
(4+x7)

18. Solve the integral cyuation

)
"slI'lh

ad fionce eoaliate J g
o !

j}(te}msull 416 = [1-a

0= o=
|0, o >
0 s

1

>> Here we have to find f(0) and we shall consider the inverse Fourier cosine

1 < <
transform with F{a) = Té ¢ 0sa=t

o > 1
‘ 2 (&)
F(0)=~— jF((f.)COS(tUdU&
T (1
1
= I (1-—wycosaduy, since Fim) =0 for o > 1
T
r =1t
2 in 0 0" T
A . SN 04 —'(.()‘-»(i
— ( I“"l_}() el (_ 1) I . . \
T € | U“ . .
- ; Cog = )
2 2 - 1
= T (1-)sind 8}( - T cos 08 |
o | - s JO‘» = 1)
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2 -2, -
fL0) = “[U—Ugn-m;|amﬂ—];
RU _ ﬂ:n"_ L G

2(1-cos®) _ 2-2sir® (0/2) _ 4sin® (0/2)

ie. f(o) = —-
' m 0 6

= Aeinl ias
Hence we now have I dsin” (0/2)

: 2
" sin? (8/2)

ie. j 5% cosab dB = (o)
0 (672 }h

Putting 8/2 =+, 40 = 24t and t varies from 0 to e,

" sin’
J E-I—PIZ—- cos(2at) - 2di=nF(a)
0 t
r sin’ ¢ i
e, [ cos (200t) dt = T F(a)

Putting o = 0, F(a) =1-0 =1

= L2
. sin” £ _ T
Thus 6[ 2 dt = )

. - . . .U
19. Find the Fourier sine transform of - Loz 0

>> Wehave F (i) = I f(xysinux dx and let (1)

0]
L_—;u
Le., FH_ () = I e sin hy dx
0

nOz

s cosa® dd = F(a)

(M

We cannot evaluate this integral directly and hence we employ the rule of

differentiation under the integral sign.

LAY

d _
o [FJ.”H—UJ

¢ . _
Y du {sinux )dx

= (.'_ oy
xcos uxdx
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©a

d _
— [F.(u)] = _[ ¢ cos ux dx
du "5 ()]
{
e ) 1 1 a
= | ——= (~acosux+usinux) | = ———=(0+3) = 5—5
2 2 2 2 2 2
| a”+u JI___O a +u a+u

dr a . ,
Hence ——i F (u )| = 5 o andby integrating w.rt u we get,
dui Jooat+u”

F(u) = tan_l(u/a)ﬂf

To evaluate ¢, letusput v = 0 FS(O) = tan” ! (My+¢c
But F.(0)=0 from (1) and hence ¢ = 0.

Thus F (u) = tan” ' (w/a)

2
—-x/2 . : :
20. Show that x¢ is self receprocal under the Fourler sine transform.

>> By the definition, F [fix)] = Jf( x)sinuxdy = Fo(u)
0
r 2, ” A
Now, FSELxe_" fz} = j ve b Tsinwydx
; ;
siniy {xeo ¥ Ydx.
L

Integrating by parts we have,

20 _ 2 - ~ .2,
Fw[xe xeJ: sinux {—e 1,2) roo I(—ex’z)ucosuxdx
0

5]

=0+u j X2 cosux dx
0

Fq (u)=u ‘[ e X2 cOs ux dx D
0
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This integral has to be evaluated by [eibnitz rule for differentiation under the integral
sign.

oo

-2
Let O (u) = ‘[ ¢ cos ux dx.
0

2.

o' (1) = j X2 d_al { cos x) dx, by Leibnitz rule.
{
0

2.
L_,—x i2

0 (u) =

(— xsin ux ) dx

b
R X2
sinux (—x¢ ¥ )dx

0’ (n) =

S o, B D e B

Now, integrating by parts we have,

o

. P ]r By
qJ’(u):[smux(ex’“) Coo je Y2y cos ux) dx
' 0

2
=0-u I X% cosux dx

0
ie., ¢’ (u)=—-u¢(u) or %{_((.::_)) -y
q)—t-(u—)du = — I Hdu+c
¢ (u)

- - 2 . _ {—1&2:’2}+f
Le., log ¢ (u) =(-u/2)+c or ¢(uy=-c

Hence, ¢ (4) = k¢ "/% wherek = ¢
To evaluatec, letusput u =0
¢ {0)=k But¢p (0)= I X dx
0]
PPut xN2 =+ o dy = N2t

=%} —

Now ¢ (0) = _[ e~ N2 dt. Butj et = %t (Standard integral)
b=0 0
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Hence ¢ (0) = V2 = k.

— 7
Wenowhave, ¢ (1) = va/2 ¢ -

Il
-
hy
=
™

~
»

Also we have from (1}, Flu)y=u¢ (u)

: -x2 cess oyt —u’n
ie., xe " Tsinuxdx = N2 ue U7 = const - (ue )
0
2 9 <
We note that #e” ¥ 7% is of the same formas x¢ ¥ 72
—x"/2
Thus xe is self reciprocal under the Fourier sine transform.

~ 1
. . . . —a
21. Find the inverse Fourier sine transformof  f () = — ¢ % a4 >0
- T0E v4
i

A
>> By data fs(a):Lu

o A
j flx)sinox dv = f,(u) and hence

0

e, F[f(x)]

2 T . . o
fix) = 7 ..‘fg (o) sinox do, being the inverse Fourier sine transform.
o]
, , 2 et 2
ie., X)y=— — sinuxy do = — § (X s
feo == - ~ 0 (x) (say)
0
“ ()—HLX
where ¢ (x) = I - o sin v do and we need to differentiate under the integral
0

sign for evaluation.

To-aun =
& _.
0/ (x) = | cos o - o do = j(’ T cos ox do
o
0 0
r Pl |OG
o (x)=| 55 (—acos o+ xsinax) | by a standard formula.

i =1)
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o

1 .
ﬂ2+X2 a +ux

2=

[
(x)= | =° ,dv+c
0 J =9,

ic., o (x) = tan_l(x/n}ﬂ‘
To evaluate c letus put x = 0.

$(0)=tan ' (0)+cor 0=0+4c - ¢=

an o

Hence ¢ (x) = tan_l{x/n) and wehave, f(x) = ¢ (x)

1
22.  Find the Fourier cosine transfornt of f(x) = L4
+ 3"

>> By the definition, Pr[f(x) ] = I flx)cosux dx = F_(u)
u

oo

e, F(u)= I —1—2 cos ux dx (D
‘ 0 1+x

We cannot evaluate the RH.S. directly and hence we employ Leibnitz rule for
differentiation under the integral sign.

[==]

d F(u) ) 1 ‘
—p =PL,(u)=J ]+1-_2(—smu.1}.\ dx
0 ;
X
ie., F/(uy=- mmsin by dx
‘ 6[ 1427

(We cannot evaluate RH.S even now and hence modify the integrand)

2
¥

Fil(u)y=- J — ——sinux dx
‘ o X{(1+x%)

——— sinuxdx

. T (1+2%)-1
x(1+ K )

]
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oa (=]

F/(uy= - [N, s
b X 0 X(1+x7)
sin ux 1t
We note that _f Ty dy = 5 and hence we have
0
, sin ux
FC (u)=—3t~+ — e dx . (2)

2 0 x(1+.:.2)

Differentiating again by Leibnitz rule we get

F/'(u) = J’ _QQ.SW_’:‘;’F_'ZL dy = EO_S_..”_; dy
p X(1+x7) g 1+x
F7(u) = F_(u}), by using (1).
or F"(u)- F (1) = 0 and this is a second order D.E. of the form
7 d
(D —1)FL_ () =0, where D = T

AEis m-1=0 o m=1, -1
The general solution is given by

] - N
e +C,0

JFC(M)=::l 5

We shall find s and Cy .

We have FC (0) = ¢;+¢, from (3).

oo
—oo

IR P R _T
But from (1), FC(U) = (_][ 1+x2dx = Ltc‘m x.‘o =5
S0 we have, c tey, = /2 .. (4)

1 2
Also from (3), F/(u) = ¢ el — o " and hence FI(0) = ¢ ~¢
From (2), F/(0) = ~1/2+0 = —n/2

So, wealsohave, ¢, ~¢, = n/2 co(B)

By solving {4) and (5) we get ¢, = 0 and ¢, = /2

1
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Using these values in (3) we have F (u) = (n/2)¢ "

Thus the required F, [ 1—12 } = g e
+Xx
23. Find the Fourier sine fransform of f(x) = S 5
Y(1+2%)

>> F [f(x)]= J.f(x}sinur dx = F (u)
0

{ This problem is similar to the previous one )

o

ie., F(uy= I

o X(1+x7)

sin iy

dx D

We cannot evaluate the integral directly and hence employ Leibnitz rule for
differentiation under the integral sign.

F/(u) = I Xeosux . J' _cos ”; dy (@)
- 5 x(1+x%) 5 (L+x?)
Differentiating again w.r. t. u,
o vsi S gin
Fq” ( ”) — j. _x_S_l_I_'IE”E d'\- — J ..L“:jl’.l..j.{'} d.\'
; o L+x g X(1+x7)
= U
T+x7)-1
te., F7(u)=- J ¢ +'-Y—")—2 - sin tx dx
) a X (1+x%)
FQ”( ) = - sinix dx + _[ in-'ux., dx
: 0 X g X(1+x%)

ie., F7(u) = -~E+F"(1f)
5 2 5
’ _-T
or Fs (u)—Fﬁ_(u) =7
i

[ ¢ 2 : - Thera -
Le., [D 1]‘~_q(u) n/2, where [ du

AEis m -1 = 0 . m=3%1
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CFisgivenby ¢ el e

1 2
Also PI = _;/2 _™2_n
pP-1 -1 2

The generatl solution is given by C.F + P.I

e, F(uy=cpe+ce” + /2 . (3)

We need to find ¢, and ¢y
F/(u)=c el —cye” Y

Putting # = 0 in (3) and (4) we have
F_.;(O) =+, + /2 and F/{0) = ¢ ~¢,

T
But  F(0) =0 from(1)and F/(0) = | —— dx from (2).
. : g 1+x
: ’ _ -1 _
ie., FS (0) = [tan x]: =n/2
We have the system of equations
C

+cz+n/2:0 and ¢, —c¢, = 12

1 1 2

By solvingweget ¢, = 0, ¢, = —m/2 and we substitute these values in (3).

Thus F (u) =n/2: (1-¢ %)

24, Find the function f( x ) whose Fourier cosine transform is given by

la—(a/2),0< 0 < 2
F(a)ﬂgi 0 , o> 24

>> By the definition f(x) = i I Fla)cos ax du
0

2
2 a ) _
flx) = . j [0—2 jCOS ax do
0
Applying Bernoulli’s rule,
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.. P -2
fxy = 2 (g sinax (=1 (cosox )™
AT a2 .2J|, 2

! K v s =0

2 1 1
= - {(0—0)— 2((:05203;—1)
n 2x J
L
. 2
Thus f(x) = 1 (1-cos2ax) = _Z_slnza;_c
X T
25. Solve the integral equation
j f(x)cosax dx = ¢ "
0
>> We have by inverse Fourier cosine transform,
2 " — i1
X)=— COS O 1)y =¢ ata.
f(x) . JF(O()“O‘%OLTdOL and F{a) by data
0
f(x) = 2 I e "Peoosux da
T U
5 i A i
:EI ' > “5 (oS X +XSIN®Y)
| _ — |
L(=a) +x it = 0
2
Thus f(x) = “

26. Find ihe Fourier cosine transform of e= ™% and hence deduce the Fourier cosine transform

. cos A X
of x¢ . Further evaluate _{ 5l dx

0 X +a

-
>> Wehave T Leh “J = --—-7—?--—; (Refer Problem - 12)
- a4+ " ’

(=]

. - a
e, J ¢ " cosux dx = ;5 .

0 HZ + T

Differentiating (i) w. r. t 4 on both sides we get,
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T ax a+u‘f 1 ——2(7 we—a
Je B (—x)cos ux dx = { (1) LAt
0 (@ +u’ ) (a°+u°)
o a;! F‘
— "
or j(xv Yeos ux dx = — 573
0 (a~+u")

_ .2
Thatis F [xe'“x:r = az_ "

2
‘ (e + 12
a
Further F_| = g
a“+u
—-ax _ _2_ )
- ¢ 5T 5 COS uX dit, by tverse cosine transform
Ty At
oS x T _ax
or g A = e “
o 4 + 1 20

Chm!ginq x to A and u to x we have

nz\+x2 2a°

I coskx T _an

e
27. Find th Fourier transform of f(x) = ° ~ v >0

-, v <0
>> F[f(x)]= _[ fexy "t dn
U o
LT R R T E
= j - dx + J-t’ ¢ dx
— o {!
v
:I (1+m)1d\+J'(, ( ru}\d
L,(l+r'n)_t f,’_(] fyx ]
= | — R —
L+ | —(1-iu) |
o1 L T_l_“L_’_“i_f_l__*_‘_ "
1+iu  1-iu 1442
2
Thus Flf(x)] = 2%
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. . . — 2y 7
28. Find the Fourter sine and cosine transforms of 2 e Wiz ™

%]

> Fs[f(x)]:jf(X)sinm‘ dx
U

oo

=2 Je“3x sin ux dx + 3 je_z‘r sinux dx
0

0
- 3x To £,—2x —|w
Fh_[f(x)]=2|-'—----2(—3sinu.\’—ucosux)| + 3| — (~2sinux—ucosux) |
‘ | 9+u JO 441 ~|0

2 3 2 3
Thus Ff(x)l=—5+ ", =u o+ ——
94+ u d+u 9+ u 44+ u

(=]

. _ —3x i = 2X . i
Fc[f(l)]—z‘[e COS liX dx+3J£ Cos ux dx
0 0

[ £9_3x |7 {?_2.'( . ‘Im
Flfix)]= 2! - (=3 cos ux + usin ux) + 3| = 2(—2cosux+usmux)|
‘ 9+u | 4+u X

6 6 1 1
Thus Flul= —S+— =6 ——s+ ——
¢ 9+12  4+u” { 2}

29. Solve the following integral equation :

o Jm, D<a<l
[ fexysinaxdr={20, 1sa<2
0 :‘ 0, o>2

il

> f Jf(x) sin ax dx
0

F, (o) thenwe have to find f(x) where,

flx) = i j F, (o) sin ax dot
0
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2| 1 2 oo
flx) =~ { j]ﬂ sin oy do + j 20 sin ax do + J‘ 0-sin ax do
1o 1 2 '
]
2| [
n ;' L r
1!
1 2
= =20 flrcos ox |+ 2| cos o | I
Tx TL Iy ho
=20 - 20

= - (cosx—1 + 2cos2y —"2cosy) = (=1 —cosx + 2¢os2x)
X TX

Thus f(x) = ;—0 {(1+cosxy — 2cos2x)

30. Obtain the Fourier sine and cosine fransforms of TV and  hence show that Hhe
Fourier sine and cosine transforms of 1/Nx are He same,

>> let f(x) = P

=]

FLF(x)] = F(u) = [ 2" sin ux dx )
{

F [fx)]I =F tuy = J- W71 cos ux dy {2

1]

Consider (2) -1 x (1). Thatis

J W (cos ux —7sinuy} dx
{}

F(u)y-iF (u)

1l

- -[xn—] P——:ux dx
0

Put Tux =+t . dy = dt/in; t also varies from () to oo,
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o -1

H
: E S [t -odt
PL_(H]—.'FS(H}—'[[,.“} ¢ i
t=0) '
1 J',ftnldt
M 11
L
o F(w)=iF,(uy = S0 LU

T iU

We shall write i = cos (n/2) + isin (n/2) = o2

— 1 —inms?
= ¢

i =cos(Hmn/2) - isin (nw/2)

Hence, F(_ {(u)—iF (u)= f(::) [ cos(nms2) — isin (aAn/2 )J
' ) i L

= Fc(u)=Fc[x"'1]:£i:—) cos (nm/2)

and Fs(u)=Fs|:x"'1j|=

Now by taking n = 1/2 we obtain

F. " —}—— = r—-(-—lé,'z") cos (m/4) and F_ }; = 1[1'{2 ) s5in {n/4)
[ }“‘\'x u]_/._ i NY ) “]rz
But T'{1/2) = Vi and cos(m/4) = 132 = sin (n/4),
1 1
Thus F | ={=NXn/2u =F | /=
DRt
EXERCISES
Find the Fourier transform of the following functions
. Cx, x| <4
L. j(x)_{0,|x[>a
Jaz—x2 | x| <a " sinx—xcosx n
2. f(x) = ! and hence show that _[ — dx=7
[0, | x| >a 0 x 4



156 FOURIER TRANSFORMS

. f]+x,—]<1£(}
3. filx)y=4¢1-x,0<x <1

0 otherwise
- 4x°
4. f(x)=-¢ 5. __I(()t')=.‘(f.’_a|x|
Find the Fourier sine and cosine transform of the following functions

6. f(x)=e ¥ 7. f(y)=x¢ %

'x, 0<x <1
8. flx)=+<2~x, 1<x<?2

0 otherwise

Solve the following integral equations

= ﬂ:J(1~0t,O£0t<]
9. E3[)‘(:()5;111&)(dJL 0 a1

e J’1,0<a<1
10, If(x)sinaxdxz-\lZ,l < o< 2

0 0, a>2
ANSWERS
i - 3 2
1. %urg_{_cos w 2. = ( sin aw — au cos au )
H I
2
sin” (1/2) — — 16
3, —_— 4. (Vr/2)ye
(1/2) ( e
diau t 2
5. 5355 6. ‘' and 5
(a“+u") - +4 e+ 4
41 4-y®
7. G 5 and 5 .3
“+4) {u+4)
sin 1 sin’ (u/2) cos u sin® (152
8. 5 and - —
(u/2) (us2)
9 2_(1_ 5“_‘_;‘:'_)
. T X

10. i{1+cosx—2ms2)()
X



V’Q‘} Unit - II1

Applications of
Partial Differential Equations

Introduction

A number of problems in science and engineering will lead us to partial differential
equations. In this unit we focus our attention on one dimensional wave equation, one
dimensional heat equation and two dimensional Laplace’s equation.

We are already familiar with the solution of homogeneous p.d.e of first and second
order by the method of separation of variables. The earlier mentioned three equations
are p.d.es of second order and we first discuss the various possible solutions of these
equations by the method of separation of variables. Later we discuss the solution of
these equations subject to a given set of boundary conditions referred to as Boundary
Value Problems (B.V.P)

In the process of solving many B.V.Ps we will also be using the earlier discussed
concept of halt range Fourier scries.

Finally we discuss the D' Alembert’s solution of one dimensional wave equation.

Various possible solutions of standard p.d.es by the method of
separation of variables,

While solving problems involving second order p.d.es by the method of separation of

variables [ Unit-IV, Vol-I ], we assumed the roots of the Auxilary Equation (A.E.) to

bereal and  distinct in the course of solving the associated O.D.Es. But the roots can

also be zero / non zero coincident or compiex. Writing the solution of the O.D.Es for

all the cases will give rise to various possible solutions.

We discuss various possible solutions of the one dimensional wave equation,
one dimensional heat equation and two dimensional Laplace’s equation.

Referring to the working procedure in the method of separation of variables,
at a particular step we equate each side comprising ODEs to a common constant k.

We need to obtain the solution of the ODEs by taking the constant k equal to
(i) zero (i) positive:k = + p2 (say) {iii) negative: k = - p2 ( say )
Thus we obtain three possible solutions for the associated pde.
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Various possible solutions of the one dimensional wave equation

2

utt =c uxx

by the method of separation of variables.

2 2
. J°u J°u
Consider —— = A2

oF 9
Let u = XT where X = X(x), T = T(t) be the solution of the PDE.
Hence the PDE becomes

2 2 2 - 2
i(@:ga (XT) o x@ T _ 24X
Jt ox dr dx*
1 &T 14X
Dividing by ¢ XT wehave, —— — = & —%
& AT odtt X g
Equating both sides to a common constant k we have,
144X 1 4T
- 5 =k and i —5 =k
X at AT di
2 2
ie., —“'---—2X— ~kX = 0 and 5—-;‘3 ~KT =0
dx dt
or (D*-k)X=0 and (D*-Fk)T=0
& d
where D? = 12 in the first equation and D? = 2 in the second equation.
X
Case () : Let k =0
The equations become
D*X=0 and D*T =0
In both the equations A.Eis mt =0 . m= 0,0
Solutions are giving by
X=(c1+c2x)eox and T:{c3+c4t)e0‘
ie., X ={(c +cyx) and T = (cy+c,t)

Hence the solution of the PDE (when constant is 0) is given by

u=XI'= (¢ +c,x) (c5+¢4t)
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Case (ii) : Letk be positive say, k = +p2
The equations become

(D*-p?y X = and
A.Es are mz-pz =0 and

mzzpzorm:igr and
Solutions are given by,

X =c ey e P and

(Dz—r:zpz) T=0
mz-—c2p2 =0

5
mz = f“pz or m = + cp

— - LLpt Y i
T-—L3( te, ¢

Hence the solution of the PDE (when constant is positive) is given by

u =

Case (iii} : Let &k be negative, say & =

The equations become,

(D*+p%) X = 0 and
A.Es are mz+p2 =0 and
or m* = —pz and
m =% jp and

Solutions are given by

X = ¢, cos px toysinpy and T

it
_.p"

XT = (¢ eP+ ¢, e P (63’eq’r+c4'e_q’t)

m*+ c? pz 0
me o= -2 p2
mo=* dcp

= 3008 cpt + ¢, sincpt

Hence the solution of the PDE (when constant is negative) is given by

u=XT=( c,” cos px + ¢,” sin px) ( c,” cos cpt+ ¢,” sincpt)

Remark : Befitting solution

Of the three possible solutions, the solution obtained i the case (iif) is considered as the
befitting / suitable solution to sole a B.V.P connected with the one dimensional wave equation

as the solution involves periodic functions.

The befitting solution of the one dimensional wape equation for sofving B.V.Ps is given by

u(x, t) = (A cos px + B sin px) (Ccos::pt+Dsincpt)
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Various possible solutions of the one dimensional heat equation

u, = ? u,, by the method of separation of variables.

. du &%
Consider — = ¢*° 5

ot P
Letu = XT where X = X (x), T = T (t)be the solution of the PDE.

Hence the PDE becomes
I(XT) o #(XT)
——— = —_— —.

of ax*

AT 2. 4 X

or X i AT =2 and dividingby X T we have,

14T 147X
2T dt X gy?

Equating both sides to a common constant k we have,

14T 1 #X

— — =k and S o=k

L‘ZT dt X d.\‘z
, dr 2, X
ie., m —c“kT =10 and 12 —kX =(
or (D-Ck)YT =0 and (D*~k) X =0

d d
where D = At in the first equation and D = i in the second equation.

Case (i} : Letk = 0
AEsarem = 0 and v (0. m=0 and m = 0, 0are the roots.
Solutions are given b

T=r¢ M= ooand X = (e xtcy) MY = (cyx+cq)
Hence the solution of the PDE is given by

u=XTI=c¢ (cy X +03)

or u(x,t) = Ax+B where ¢, ¢, = A and ¢, ¢y =B
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Case (ii) : Let k be positive say k = + p°
A Es are m—czp2 =0 and mz—p2 =0

m = c2p2 and m=z%p
Solutions are given by

22 ) ~
T=c¢/¢7" and X-= oy et ac e P

Hence the solution of the PDE is given by
(‘2 2( e -px
u=XT=c'¢ P -(t'z’(’“+63't’ Py
2 Zr _
or u(x, t)=e&77 (A e™+B ¢ P) where ¢)c,/ = A" and ¢/ ¢ = B’
Case (iii) : Let k be negative, say k = - p2
A.Esare m + ¢ p2 =0 and mz+p2 =0
mzmczpz and m =t ip

Solutions are given by

132
T=c¢"¢ P! and X

i ¢y cos px + ¢, sin px

Hence the solution of the PDE is given by
2 2
w=XT=c"e P, (c,” cos px+c,” sinpx)
_CZ Zt
or u(x,t)=e“P (A" cos px+B” sin px)
where Cl" 52" = A" & cl" c3" = B

Remark : As remarked earlier in the case of one dimensional wave equation, the befitting /
suitable solution of the one dimensional heat equation for solving B.V.Ps is given by

2 2
u(x, t)y=¢ “F1 (A cos px+ Bsinpx )

Various possible solutions of the two dimensional Laplace’s

equation u#__+ u__ =0 by the method of separation of variables
9 xx " Yyy y P

2 2
Consider a—; + a—g =0

ox dy
Let # = XYwhereX = X(x), Y = Y ( i) be the solution of the PDE,
Hence the PDE becomes
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FXY)  P(XY) _

0
ox? 8y2
2 2
or Y d—? + X Y = 0 and dividing by XY we have,
dx dy’

1 X -14d°Y

X a2 Y 4

1 &2 X -1 4%y
R L and — — =k
X gyt Yo g

or (D*-k)X=0and (DP+k)Y =0

d . .
- in the second equation.

d
where D = —— inthefirstequation and D = d-]-’!

dx
Case (i) : Letk = 0
AEism® = Gin respect of both the equations.
m=0,0 and m=0,0
Solutions are given by

X = €L X+Cy

and Y = cyy+ey
Hence the solution of the PDE is given by

u=XY=(¢x+c) (yte)

Case (ii) : Let kbe positive, say k = + p*

A.Es are m* - pz =90

and mz+;n2 =0
m==%p and m ==t ip
Solutions are given by
X = cl'epxﬂfz’ e and Y = ¢y’ cospy+c, sinpy

Hence the solution of the PDE is given by

u=XY = (cl'epx+ cz’e"px) (ey cospy+c, sinpy)
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Case (iii) : Let k be negative, say k = — p2
A.Es are m? + p2 =0 and m? - pt =0
m =t ip and m=z=1p

Solutions are given by

X =¢" cospx+cy

: . _ . Pi,’ L A —py
1 sinpx and Y = ¢," e+ e

4
Hence the solution of the PDE is given by

F

u=XY = (¢ cospx+c,” sinpx) (c;” e+ e PY)

Remark : We have to choose the befitting / suitable solution which conforms to the given
boundary conditions in the course of solving a B.V.P associated with the Laplace’s equation in
two dimensions. Usually the solution obtained in the case (iii) will be befitting as it invloves
pertodic functions of x

Working procedure for problems (Solving a B.V.P.)

< We assume the befitting / suitable solution associated with the three partial
differential equations. (Refer to the earlier given remarks)

< Weapply the given conditions and determine the arbitrary constants present in
the solution.

< The concept of half range Fourier series will help in determining some of the
constants in many problems.

WORKED PROBLEMS

Problems on Wave Equation

&% u 2 0% u
L. Solve the wave equation - — = ¢© — given that (0, t) =0, u(l, 1) =0,
ot a2 &
du .
9 = OQwhen t =0 and u(x, 0) = i, sin (nx/1)

>> The befitting solution for solving the given problem is represented by
(x, t)=(Acosprx+Bsinpx) (Ccoscpt+Dsincpt) oD
Consider u (0, #) = 0. Now (1) becomes
0=(A) (Ccoscpt+Dsincpt )
This clearly implies that we must have A = 0
Consider u (!, t) = 0. Using A = 0, (1) becomes
0 = (Bsinpl) (Ccoscpt+ Dsincpt)
Since A =0, B cannotbezero. (If B = Qthenu(x, t) = 0)
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Hence we must have sinp/ = 0
Noting thatsinun = Oforrn =1, 2, 3, --- wemusthave, pl = nm or p = un/i
UsingA = 0 and p = nn/lin (1) we have,

u(x,t):Bsinn—T—x-[Ccos i”;—CI+Ds-inm;—"1) .. {2)
/

Differentiating partially w.r.t ¢ we have,

au W11 S I 12 , nmcty [ e
at—Bsm [ { C sin i + D cos !]‘[I]

Consider a—? =0 when ¢t =0
0= s " () {7

Since B # 0, wemusthave D = 0. Using D = 0 in(2) we have,

. hnXx nnct
u(x, t) = BC sin — cos —,;

] J,,n=1,2,3,--’

We shall take n =1, 2,3, --- and correspondingly take the constant

BC = b, by, by

In view of this, we have a set of independent solutions satisfying three of the given
conditions.

It is evident that their sum also satisfies the same conditions.
On adding these independent solutions we get,

=z . Hmx nmct
u(x,t)y= % bn smTcosT
=1

"

We now consider the last condition u (x, 0) = U, sin (nx/1)

Putting ¢t = 0in (3) we have,
u(x,0)= 3% & sin E, gince cos0 =1

no=1

. . Tx il . HNX
ie., Uy sin = = Zl b” sin ——

in ™ poein 4 b sin 2L p gip o
or uosmf—lsm[+2bm !,+351n !,+---

Comparing both sides we get, bl = Uy, b2 =0, b3 =0, -
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Thus by substituting these values in the expanded form of (3) we get,

Ao usin ™ cos
u(x, .)-u0 sin j o8

. 2 . .
2. Solve the wave equation g = ¢ u . subject to the conditions

0
u(0,8)y=0,u{l, t)=20, é-zf(i',[)):(] and r.f(x,[))zu“sin?'(M‘/I)

>> | It may be noted that the first three conditions are same as in problem-1. It is
necessary to retrace / give all the steps upto the stage of getting equation (3) |

uix, t)y=% bH sin _’_’?;.L?F cos@ ... (3)

n=1
Consider u(x, Q) = ", sin® {nx/1). We have from (3),
w{x,0)= % b sin ETTD(—

nmo-1

. . X - HTLY
ie., i, sm3 = gl bn sin .

.3 3 . 1 .
We know that sin” 8 = 1 sin 8 — 4 sin 38

SR < S0 I - Anx
HUi_‘lS ] 4sm ; :—ngl 5in /

e Mg Mo Bme o om o dmr
e, i sin I A j = by osin ] 5 Si ; 3 ;

Comparing both sides we get,

by = Buy/4, by =0, by=-uy/d, by =0, by=0,-

Thus by substituting these values in the expanded form of (3) we get,

u(x, 1) 31y sin ™ cos Tt o . 3mx cos et
-9 el E 20 i 2 et
(%, 4 I I S ]
3. Solve the wave equation u, = c? u. subject to the conditions

u(0,t)y=0, u(l, t)=0, ?fz[)whent:(] and u{x,0)=f(x)

>> It may be noted that the first three conditions are same as in problem-1. It is
necessary to retrace ! give all the steps upto the stage of getting equation (3)]

“f
u{x,t)= 3 b sin -’E;E COS ET;L— (3

nm=1
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Consider u (x, 0) = f(x). We have from (3),

u{x,0)= 3% b sin }E;x

=1

HTX

fe., f(x)= % b sin N
H=1

[Note : In the previous two problems L.H.S was also of the form br{ sin (nnx/1) for some

particular value(s) of n  and  hence we could easily find the constants b, b, by

imdividually by simple comparison. In the present situation b will be presented using the
concept of half range Fourier series]

The series in R H.S is regarded as the sine half range Fourier series of f(x}in{0, )
and hence

{
bnz%_[f(x)sinﬁﬁ}—{ dx Y
0

Thus we have the required solution in the form

oo

u(x, t)= 3% b sin% ccrsnTﬂ:dL

n=1

where b, is given by (4).

Remark : It the subsequent problems [problems 4&5] f( x ) will be given specifically and
hence we will be finding b_by carrying out the integration.

4. Solve the wave equation u,, = *u Qiven that
XX

H
u(0,t)y=0=u(l,t), i (x,0)=0andu(x, 0)=x(l-x)

>> [It may be noted that the first three conditions are same as in problem-1. It is
necessary to retrace / give all the steps upto the stage of getting equation (3)]

HIX nmct

u(x, ty= % bn sin [ cos I ... (3)

=1

Consideru(x, 0y =x(l-x) = (Ix—x2). We have from (3},
uix, 0) =

ie., (t'x—x2) =
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The series in R.H.S is regarded as the sine half range Fourier series of ( Ix—x%) in
(9, 1) and hence

!
2
h =] J(lx—xz) sin E?x dx
0

[Refer problem - 33 of unit-I for the integration process)

b

41 | n .8;'2/}13 m° when # is odd
by = 3311-(-1)" or b =
n 0 when n is even
We substitute for b, in (3).
Thus the required solution is given by
= 812 HmX nnct
u{x, t) = 3 sin Cos
n=1,3 5.. n3 753 ! !
, 9% u 2 P u .
5. Show that the solution of the B.V.P governed by the p.d.c Py = ¢ Exz_ subject to the
f
conditions u (0, ty=0=u(l, t), ?;f (¥, 0)=0andu(x, 0) = f(x)where

% ind<x<isn

flx) = ok is given by

T (I-x)yinl/2<x <!

8 | 1 . mx nict 1 . 3mx 3nct
5| 3 8in 4 08 - - —< sin —— cos --—+
{ i 32 ! {

>> [It may be noted that the first three conditions are same as in problem-1. It is
necessary to retrace / give all the steps upto the stage of getting equation (3)]

u{x, t)y= 3% b sin?cos ?ET—t (3
n=1

Consider u (x, 0) = f(x). We have from (3),

u(x,0)= 3 b sin ??x-

ie., flx)= % b, sin N

=1
The series in R.H.S is regarded as the sine half range Fourier series of f(x)in (0, 1)
and hence
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{
J (x) sin ”T[-x dx
0

'--Im

Referring to the given f ( x ) we have,

12 ! 1
|
|

2 2kx . mmx
bH:-I— o siny dx+ I[ (I—-r)sm-——d\
0 L2 |
Ak (2 { l
. HILY 3
= -;2— Il sin 7 dx+ I ({—x) sin o dx
] 12 |
[ [2
| —cos X sin
_ 4k b b
2| { (nm/d) ( /Y
[ 0
{
] NI x| t
—cos = e
+ H—\) e [ .
(HT[/I) (nn/! )‘ ‘
L2
B N A S U O OV S U B N 3 N G AU 2]
2 i a2 20 et 20 am i 2 2 J it 2 )
4k - 8k
Hence b, = — - —5 , si ?T = 5 sin m
/ nt < nm 2
We substitute for f# in 17
w(x, t)y= 3% A sin 7 sin " cos et
’ yT1one 22 T2 f S
Thus we have on expanding the RH.S.
(e, 1) = 2T L G0 ™ o5 T g I g et
u(x, g 7 s ; 325‘“[“’5;
6. Solve the one dimensional wave cquation u,, = ¢ . subject to the conditions

du Y
w(0,t)y=0 u(2!, t)=0 u(x,0)=0 and EY —asmﬂ at t =10

>> [Note that the last two conditions are different in comparison with the type of conditions
in problems 1 to 5]
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The befitting solution for solving the given problem is represented by

u(x, t) = (Acospx+Bsinpx) { Ccoscpt+ Dsincpt) o AD
Consider 1 (0, t) = 0. Now (1) becomes

0=(A)(Ccoscpt+D sincpt) . A=0
Consider « (27, t) = 0. Using 4 = 0 (1) becomes

O=(Bsmp-2/)(C cos cpt+D sin cpt)
Since A = 0, B cannotbezero. (If B =0 then u(x, t)=10)
Hence we must have sin(p-27)=0or p- 2l =nn .. p = nn/21

Using A =0 and p = nn/2/ in (1) we have,

-

. onmx | nmct . oamct
u(x, t) = B sin 2] \C Cos -27+Dsm "—f/j . {2)

Now consider u(x, 0} =0

We have from (2), 0 = BC sin {;TE_;

Since B # {), wemusthave C = 0.

N (71~ SR B
Now, u(x, t) = BD sin 5 Sin 2}’”'"]’2’3’”'
We shall take n=1,2,3,... and correspondingly take the constant
BD = by, by, by, ...

In view of this, we have a set of independent solutions satisfying three of the given
conditions. It is evident that their sum also satisfy the same conditions.

On adding these independent solutions we get,

- L Hmx . Amct
M(Jc,t)wngl b, sin 5y ST .. (3}
d Y nct {nnc)
Now, 91 - ngi bﬁbm 5 o8 > ( 5] J
.. .. 1 .Omx
Consider the last condition, ?:‘ = i1 sin 5] at f = 0
i

du = _nmx ‘nme e . NTX
At r_o’ ot —”%]bﬂ o 2r l 21 J_ 21 Jzz_‘l(”b”)‘?ﬂn 21
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Tx Tc | X 27 . 3nx
ZILb L,1112t,+2b §in —— +3b sin +}

Le., a bm > oY

Comparing both sides we get,

a=E-b. or b1=2—ml'
b

—
—

Thus, by substituting these values in the expanded form of (3) we get,

24l . mx nct

n E sin ﬁ

7. Solve the wave equation u,, = :: u. giventhatu (0,4) =0 = u{21,t),

ft

37X

u{x,0)=0 and —(l 0) = asin 57

>> [We need to retrace all the steps of prob.-6 upto the stage of getting equation (3) |

u(x,t) = L b, sin- --E----s'mnm:t ...(3)
S 21 21
N du _ ¢ b sin TEX g MREL[MRC
ow, P ,21 si 57 08 57 51 |
N . (”‘“W‘E Cnb ) sin X
37 (x, )_n§1 SIS l\ Y “Z] (ro,) sin 27
3RX  mC HTX
Le., a sin T = 5 ”%1 (nb ) sin 27
) .3 3 . 1 . .
Using sin Grz smﬂ-—z sin30 where6=nx/2! in L.H.5, we have,
3¢ . mx a . 312
4 SN2y T S T
= 2 b +2b + 3b, sin +
T R Y I Y R R ¥
nc 3a 3al
= 27 b]= 4 or b] Yo bz—-(]
me al
21-3?33——4 orbg_—6nc,b4—0,b5—0
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Thus by substituting these values in the expanded form of (3) we get,

(x,t) = 2% gin BF gip "t el 3mx . 3mct
)= e ST 2T M 07 Tene M T2 21
3° u A

8. Sofve the B.V.P governed by the p.d.e 3 =¢ a ;. subjected fo the conditions,

(0,8 =0u(2,t)=0,u(x,0) =0 and

X .
du 7 in £ x s
={(x,0)=v(x)where v(x) =
dt 21-x
— mt < x<2]
| !
>> [We need to retrace all the steps of prob.-6 upto the stage of getting equation (3))
. i MTRY L onmed
u(x,t):ngl bnbm 57 Sin .. (3)
du = _nnx  nnc (nme)
Now, 3t ,E] bn sin =5~ cos —o Y J

At t =140, du (x,0) = Z b, sin X [nm]

X

ie, w(x)= % B sin % where B”'—”’-“H[H_CJ

"=

21

The series in RH.S is regarded as the sinc half range Fourier series of @ {x ) in
(0,2!1) and hence

21
2
B”zﬁ Jf(x) sin -y dx
0
) / NZI
X . AmXx 2l-x . nmnx
=7 JTSm 5] d;+J I sin 5 dx
0 i |
) 1 21
. oHmx B . nmX
:}5 E!xbln 5 d1+;[(21 X)) sin 7 dx

L
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—cos LTX —ain LEX
Ual oy T
(nm/21) J

u e {n 2 ._’)
0

h"m|’—'
—_

[ nmx L r;?tﬂ\

i TR

1| 21 iy 4P [ am)
B = 5y-"—|lcos—o |+ , ;|sin—7-
2 J 2| A 2 J

= ——= sin
21 ) ne 2

16{ . HE

SN —(—

N n3 7'53 c

Thus by substituting this value in (3) we get,
= 16 | nmw HTX nnct
#(x,t)= % ——= sin —;- sin - osin ———
B e 2 21 21

. du 9 i .
9. Solve the wave equation —a-——-,i _— 5.2 under the conditions u (0, £) =0 =u({, t)
= x

forallt, w(x,0) = f{x} and % (x,0)=g(x)
>> The befitting solution for solving the problem is represented by,
H(x,t) = (Acospx+Bsinpx)(Ccoscpl + Dsincpt) L1
Consider u{0,t) = 0. Now (1) becomes
0=(A)(Ccosept+ Dsinept) oo A=10
Consider u (!, t) = 0. Using A =0, (1)becomes

0 = (Bsinpl) (Ccoscpt + Dsincpt)
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Since A = 0, B cannot be zero, (IfB =0 then u(x,t) = 0}
Hence we must havesinp! = 0 or pi=nn - p = nn/l

Using A =0 and p = nn/! in (1) we have,

#{x, t) = B sin .’3?5 [C cos EFLLD sin %Ct]

-t t
., ix, t) = sin —?E (BC oS Er;(-+BD sin n_r;:g_}

\

Taking # =1,2,3,--- and BC = bl' bz, b3, --., BD = bl" bz’, bg’--'

we have a set of independent solutions,

Id o
H{x,t) = sin i”;{ | h” COS n_:r;_ct + bn’ sin f{;c‘_f_); n=1,2,3,-..
Y
satisfying the first two given conditions.
It is evident that their sum also satisfy the same conditions.
On adding these independent solutions we get,
uix, f) = ”21 sin n_;u |I b” cos HE{C--f + b”’ sin ET%{} o (2)

Now consider the condition 1 ( v, 0) =Ff(x)
u(x,0)= % bn sin X
=1 !
Li2iod

ie., flx) = E b, sin g

-1

The series in R.H.S is regarded as the sine half range Fourier series of f(x)in (0, 1)
and hence

!
5 . "
b = i j_f(:(] sin -{??1 dx - (3)
¢

Also by differentiating (2) partially w.r.t f we have,

b 13 o .\

du . HTXY . HTcCE nnet HTC

= (x,ty = Sin —7 [ —b sin — — + b’ cos - — | .| 2%
n=1 | E !

dt { n { !

|

0
We consider the last condition (}: (x,0)=g(x)
(;

u N
Py (x, 0) = ”>:] sin b’ i )
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ie., glx)y= % B sn n:}t,_x_: where B = b’ | % 1
=1 \ /
Again, the series in R.H.S is regarded as the sine half range Fourier seriesof g(x) in

(0, ) and hence

f
2 . HTX
B, = 3 Jg(x) sin dx
b

{
) L nme) 2 s
ie., b” [TJ = (_][g(x) sin == dx

Thus the required solution as in (2) is given by

- t , t
u(x, t) = ;1 sin EJIH (bn cos l’?;f +b sin Eﬂf J
i ) !
2 T . = . HIX
where, bn = ‘!f(x) sin =5 dx and bn = - [_][g(x) sin —- dx

Note : Jff(x) and g(x)aregiven specifically, we obtain the corvesponding b” and b”’

by completing the integration process.

Problems on Heat Equation

ot S Fu

i

10. Obtaint the solution of the heat equation i ¢ ] - stibject to the conditions
\'s

(0, t)=0 u(l, )y =0 and nu(x, 0)=f(x)
>> The befitting solution for solving the problem is represented by

- pz t

Hi{x,t)y=-e (A cos px+B sin px) AD

Consider # (0, t) = (0. Now (1) becomes
D= V(A L A=D
Consider u (1, t) = 0. Using A = 0, (1) becomes

_ 2.2,
0=¢ " (Bsinpl)
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Since A = 0, B cannotbezero (IfB = Othen u(x, t) = {)
Hence we must have sinp! = 0 or pl = nn . p = un/l
Using A =0 and p = nan/l in (1) wehave,

wix, ty=¢ ' (Bsin-'-”;l-') Sn=1,2,3, ...

We shall take n=1,2,3, - and correspondingly take the constant
B = bl’ bz, b3,~-

In view of this we have a set of independent solutions satisfying the first two of the
given conditions.

It is evident that their sum also satisfy the same conditions.

On adding these independent solutions we get

RN
=3 [

Hix, t)y= % b”e sing ... (2)
n=1
We now consider the last condition  (x, 0) = f(x). Wehave from (2},
u(x, )= % bH sin ”Tx

n-1

) = . ONnmx
ie., f(x)y=73% b, sin e
n=1

The series in R.H.S is regarded as the sine half range Fourier series of f(x)in
(0, 1) and hence

{
2 nmx
b= [F(x) sin ET;-‘- dx .3
0

Thus the required solution # ( x, t)is given by (2) where b is given by (3).

5 1

11, Solve the heat equation ¢ -{ given that w (0, £) =0, w(l, 1) =0 and

ou
a o ox
u(x, 0)=100x/1

>> | We need to retrace all the steps of problem-10. Further we have to find the
constant b for the given f(x)]

i
_ 2 I00x 200 [ e
ﬂ_.f I 51N !—il = 3 X S1n

0 {}
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{ —cos 2% sin
!
b, = @ Py ——— -——" | , by Bernoulli’s rule.
! [ {nn/l) (mu/1)"
)
_ _ EER:ES
b :ggo--—f(lcos nm) = 2@(-])”:290( o
n i s nm nr

The required solution is obtained by substituting this value of bH in (2).

222

o 2 _1 H+1 -ng_(‘_f

Thus wu(x, f) = n‘j‘“_l _0_0_(_;m_) e F sin m;rx
2

12. Obtain the selution of the heat cquation % = % ;’ given that
X

u(0,t)=0=uwu(l, t) and u{x, 0) = f(x)where,
# mo<x <2
flx) =1

T (I-x)yml2 €£x <!

>> | We need to retrace all the steps of problem-10. Further we have to find the
constant b, for the given f(x)]

HTA

i
_{f{ x) sin ,’L A
0

— b3

172

2 2fx | wAx 2T . HAx
"= 7 sin 7 dx+j ; {(I-x) sin T dx
0 i2
o7 {12 !
. HTX . ATX
= }2 Jx sin -= dx +I:[(:‘—x) sin = dx

[ Refer problem - 5 for the integration process |

8T in ni
= sin -
" ?12 1'[2 2

b
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The required solution is obtained by substituting this value of b in (2).

8T = 1 . HT H ., My
- 3 -5 s 4 e ! sin —;—

Thus u(x,t)=--n2- > > ]
n=1 n

13. Solve the cquation u, = 2 u o given that (0, ty=10, u(30,1) = 0 and

uf{x, 0)=2x+20

>> The befitting sotution for solving the given problem is represented by

u(x, t)= R (A cos px+B sin px) (D

Consider u (0, £} = 0. Now (1) becomes

22
D=¢ P (A) .~ A=0

Consider u {30, t) = 0. Using A = 0, (1) becomes

'22t
0=e¢ P! (Bsin30p)

Since Bz 0, sin30p =0 or 30p=nn .. p=nn/30

21z
st
. HTX
Now u(x,t)=c¢ . { B sin 30

Ingeneral, u(x, t)= Y b ¢ " ein r%x
=1

. (2)

Consider u{x, 0) = 2x+20 and we have from (2} .

o

20+20= 5 b, sin 5o

m=1

The series in R.H.S is regarded as the sine half range Fourier series of (2x+20) in
(0, 30) and hence

30
L)

2 . hmx
b =30-(_}[(2x+20)5m dx

30

n
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o
—cog T ey X
1 “O% 30 e
b= e | (2x420)— — _ 2. Y >
15 (nn/30) (rnn/30) 0
5 30
-~ i
=25 (2x420) cos X
M 30 0
-2 . 40 i
b = -2 180 cos nm-20 = 40 Mg cosnn = 9 f1-4(-1)"
Hoonm nm nm '

The required solution is obtained by substituting this value of E:'H in (2)

22
-uEct

40 {1—4(—1)”} e 0 sin Tt

Thus u(x, t)= 3%

=71

4. Solve the heat equation u, = (Zun_ subject to the conditions,
H(0,t)=0, u(10,4)=0 and wu(x,0) = f(x)where

X inl<x=<5
f(x)_{l(]—x in5<x<10

>> The befitting solution for solving the problem is represented by
22
u(x, t)=¢ ' (A cos px+B sin px) D
Consider u (0, t) = 0. Now (1) becomes
- 2 P_r
0=e P (A) o A=0
Consider u (10, t) = 0. Using A = 0, (1) becomes
2.2,
0=¢ 7" (Bsin 10p)

Since B # 0, sin 10p =0 or 10p = nn .. p = pn/10

- n f[‘-n"‘-f

Now u(x,t)=ce w ( B sin iﬂ—:)E)
10
oy ___.Ezﬂ:f.'zf HTLY
Ingeneral, #(x, t)= ¥ b ¢ 100 sin W (2

Consider 1 (x, 0) = f(x) and we have from (2)

£

. HTX
f(x)= 3 b sin 10

n=1 *
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The series in RH.S is regarded as the sine half range Fourier series of f{x) in
(0, 10) and hence

10
2 . HEX
b _ﬁgf(x)51n 10 dx

[ 5 10
1 . HRX . AmX
b]I =3 Jx sin -+ dx+:[(10~x) sin 10 dx
ol
) ﬁ5
—cos T L M|
R R [ )
{nn/10) ( nm/10 )2
0
- 10
~- COs nnx —-sin nnx
I R
(nm/10) (nm/10)
5

1[-10 amt 100 { . wm) 10 nm
=c|—— |5cos 5+ 5, |sin — | —— | -5cos —
) nto 2

- 100 [—sin EJ
”2752 2

200 . um 40 . Hm

1
b == . sin . = sin
L e 2

The required solution is obtained by substituting this value of b, in (2}.

222
-—Hmnct

15. Solve the  heat equation a—f = — with boundary conditions
(
(0, t)=0=u(1,t) and u(x,0)=3sinnx where 0 <x <1, t >0

?
>> Comparing the given p.d.e with that of the standard form : gL: = a—; ,
x

we have ¢ = 1

The associated befitting form of the solution is represented by
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u(x,f)ze_p?(A cos px + B sin px) ()
Consider u (0, t) = 0. Now {1} becomes
2
O f’_p ¢ (A) P A = 0
Consider u(l, t)=10. Using A =0, (1) becomes

2
0=¢?"!(Bsinp)

Since B # 0, sinp=0o0r p=nn

22
Now u(x, t)=¢ "' (B sin nnx)
In al f) = . b -t : 2
general, u(x, f) = 3% € sin Ay ... {2)

=1

Consideru (x, 0) = 3 sin mx and we have from (2),

3 sin mx

i
v e

bn sin Amx

n 1

ie., 3sinmxy = bl sin nx+b25in2mc+b351n3m+-~
Comparing both sides we get b.l = 3, bz =0, b3 =0, -

We substitute these values in the expanded form of (2) .

16. Show that the solution of the B.V.P : u, = Czun; u{0,t)y=0=u(n, t) and
u = mx—x>when t = 0in (0, n)isgiven by

Bl 1 _.2p . 1 _o.2; | 1 _ss.2, . g
—lze “fgin x+ 3 ¢ ¢! 5in 3x+-—3 ¢ 256‘5m5x+“.|
T 1T 3 5

>> The befitting solution for solving the given B.V.P is represented by
2.2

u(x,t):e_tpt(Acospx+Bsinpx} (1)

Consider u (0, t) = 0. Now (1) becomes
_ 2

0=¢ “F " (A) S A=0
Consider u#(m, t) = 0.Using A = 0 (1, becomes

0=e Pt ( Bsinpm)

Since B # 0, sinprn =0 L op=mn



HEAT EQUATION 181

2
Now u(x,t)=2¢ "1 (Bsinux)

o

Ingeneral, u(x, t}y = Y b

o=

22
ot

o sin A ... (2)

u{x, 0) = nmx— ¥ and we have from (2)

N o
nx-x"= 3y b sinmx

i 1

The series in RH.S is regarded as the sine half range Fourier series of (1t x - x*) in
(0, n) and hence

(rl:xﬂxz) sin nx dx

o
I
= ]
S e A

e ; " ; . o . T
y o2 {(M_xz) | [:_593_"1] C(mo2x) L____%ﬂ.r},f.f.% [ -2) (_cos_;?_aﬂ
1 n n._ o

h | 7
A
-4 -1 . 4
w3 [cosnx}g = -z fcosum—-1° = - ! 1-(-1)"-
TN M mn
8 . ;
b” = 3 when 7 isodd and b” = 0 when »n iseven.
TH
Hence we have from (2},
- 8 S0t
u{x, )= > ---iu‘”rsm nx
m=1.3,5 mn
1 - 1 1
Thus w(x, t)=-|—5¢€° t sinx+ ;e ¢t gin 3x+- ;€ 3¢t gin 5x +
1 3 5
du 97
17. Solve the BV .P: = = & I | I P
ot oy~

du du
Woa =0, by =0, uix, 0) =
B,‘((t’ ) =0, e ¢ ) wix, 0) = x

>> The befitting solution for solving the given B.V.P is represented by

uix, by = ¢ cptt (Acospx+ Bsinpy) . (1)

dl{ - TPt

. (—pA sin px+pB cos px)
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2 2
@(0 t)ze_””(pB)zo n B=90
Bu (‘?f .
Also e (I, t)y=¢ P {(—pAsinpl) =0

Since B = 0, A cannotbe zero and hence we must have,
sinpl =0 or pl =nn . p=nn/l

an
Now u(x,t)=¢ " (Acos H?{)

Ingeneral u{x, t)= 3 a e ' cos —— . A{2)
Here we have taken n =0, 1, 2, 3,--- inview of the term cos (nnx/1) in the
summation.

Consider u(x, 0) = x and we have from (2)

oa

nmx
X = 3 4, cos i
o=
. - HILX
ie., X =5+ 3 o4, cos8 - i
n=1

Moo L _ %

or x_z Y nncosl,wereau—

n=1i

The series in RH.S is regarded as the cosine half range Fourier series of x in (0, [)
and hence

2 2
A0 =7 _[x dx and a, = i Jx COs ”? dx
0 {
2 | x? Ao !
Now, AO = ? ‘7?} = (IU = 7 = 2
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{
Also g = % Ix cos m;:;g dx
0
{
{ sin ey —COS e
_2p M e
IL' (nn/l) (/i
a = 2 —12— {co«s‘ m—nﬁ = 2—', (cos nm-1) = 21 5(—1)” 1!
" ! ﬂz 7'[2 ) { Ji(] ?’12 1'[2 ) .‘12 T[2 .
-4] . :
a = —— when nn is oddand 4 = (} when r iseven.
n n2 TE2 b
We sshall write (2} in the form,
:rlnl i
= HTLX
u(x, t}=a0+n§1 a, ¢ T cos ="
—nznzrzr
! = -4} 2 HTLX
Thus u(x, t) =5+ S5 e ! cos -
2 n=1,3,5 : nz"rz I
. ou 3 & u . .. . o
18. Solve the heat equation EYiall: 12 subject to the conditions : u is not infinite when
ax
du 2
r—)oo,é—r={}f0rx=0mtdx=!, u=1Ix-—x" for t =0 between x = 0 and
x=1

>> [ The conditions are of the same type as in problem-17 |
2.2
We note that in the befitting solution ¢ ¥
condition is satisfied.

— U as t — oo The first of the given

[ We need to retrace all the steps of problem-17. We have to compute a, and a, by

taking ( Ix - 2 )]
!

2
Ay = 7 I(Ix-xz) dx
0
{
PR oS E_ﬁ}_ﬁ
07 2 30_1’ 2 3/—3
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2
a, = A2 = F/6

{
2 -
. I(Ix—xz) cos ”?‘ dx
U
i
_ HTX nmx . HIY
5 s = T Cos Ty -sin
g, =T (r=a) - o (120} e 4 (=2) e
! {nm/h) (nm/lY (nr/ly )
2 2ol HTLX i1k
= . J— Ry PV S |
|2 (1-2x) cos i JO
2 2
! - =21
a =2 - -lcosnm-1 = 32( LCos M+ 1! = ‘!(vl)”+1*
" n* n? n ot
- 4f?
a =—;—, when n=2,4,--- and a2 =0, when n=1,3,---
no2 11:2 #
12 z Y nmx
Thus w{x, t}y=— + 3 » 5 € 1 Ccos T
6 L n?n® !
3 6
19. Find the solution of n k stch that
dx o x?
(i) 0 is not mfinite when t > + «
. do _
(i) N 0 when x = 0, O = 0 when x =1 forall values of ¢
. ,
(ifi) 6 =6, whent =0 forallvaluesof x in(0, 1)
ou , u
>> Comparing the given p.d.e with that of the standard form : 3 = ¢ dz_ , we
Y
have > =k and u = 9
The associated befitting form of solution is represented by
0(x,t) = oKt (A cos px+B sin px) L1y
o2
As b too, ¢ "FP 0 (when k > 0)

B(x, t) — 0, the first condition is satisfied



U
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- 2
From (1), 3—2 = o kP {—pA sin px+pB cos px)
Consider 29 =0 when x = 0.
dx
We now have, (0 = oKyt (pB) . B=0

Consider 8 = 0 when x = /. Using B = 0 (1) becomes

el
0=e Pt (A cos pl)
Since B = 0, A cannotbe zero and we must have,

cos pl = 0 or pl isan odd multiple of ©/2

ie., ;?I:(Zn—l]g ;::(2;1—1)—%;n=1,2,3,---
Now from (1), 8(x, t) = ¢ (21~ 1) (27K 4 (2"-_21;)’“
In general, 0 (x, )= Z a {,—{211—1]_ (A28 kt cos (2n 211) X Q)

=1

Consider 8 = 6, whent = (0. We have from (2),

The series in R.H.S is regarded as the cosine half range Fourier series of 0, in (0, 1)

and hence
ZI (2 1)
n— X
a, = _[6. S Y
(
-4
280]: . (2n~ l)m /(2n—1)n1
=7 | sin s A ;
Jo
20 40
0 21 is 0 i
f, = (2:1—1) ‘5m(2n—1) :rt{2 _1)5111(211—1)2

We substitute this value of 2 in (2). 8(x, t)isgivenby
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__0 b o—(2n-1) (n/20) &t (2n-1) nx
-,.] — L= .
- ”Z] Sy Sin (2n—-1) 5 ¢ cos Y
16, ~ (2 kt ™ 1 _(ap20ue 3mx
Thus 8(x, t) = - ¢ cos 5 -~ 3¢ cos oy +---

Problems on two dimensional Laplace’s equation

2 2
. . : d i Jd°u
Note : The various possible solutions of S+, =0 are
ax* Ay
(i) u:(clx+c‘2)(c3y+¢:4)
(i) wo= (¢ e+ ¢/ ey ey cos py+ ¢, sin py)
Gil)  u = (¢ cos px+c,” sin px) ()" e e )

We take note of all the given conditions and  choose the befitting solution. Usually (iii) will
be befitting as it involves periodic functions in the independent variable x.

FPu Fu . .
20. Soloe 247 2L - subject to the conditons,

ox? 81/2

u(U,y)zo: u(m, y) =0, u{x,e) =0 and u{x, 0) =k sin 2x

>> The befitting solution to solve the given problem is represented by
u(x, y)=(A cos px+B sin px) (C ¥+ D ¢7FY) o (D
u(0, y)=0gives (A) (Ce™+DeFy=0 - A=90
u(m, y) =0 gives (Bsinpn) (CeP+De Py =0

Since A =0, B# 0 and wc must have

sinpr =0 .. p=n where n isan integer.

Now wu(x,y) = (Bsinnx) (CY+De ")

The condition ¥ (x, =) = 0 means that ¥ — 0 as Yy —> oo

M 5 0 as - e

ie., 0 = (B sinnx) (Ce™y since ¢
Since B # 0O wemusthave C = ()

Wenow have, u (x, y} = BD sin nx ¢ ny

Taking n =1,2,3,.-- and BD=b],bz,b3---



LAPLACE's EQUATION 187

we obtain a set of independent solutions satistving the first three conditions. Their sum
also satisfy these conditions. Hence we write

H{x,yy= % b sinnx e ()
n=1

Consider # (x, 0) = ksin2x and we have from (2),

o

u(x,0)= % b sinny

-1
ie., k sin 2x = bl sinx + b2 sin 2x + b3 sin3x+ .-
Comparing both sides we get, b] =0, bz =k, 1'13 =, b4 =0

Thus by substituting these values in the expanded form of (2) we have the required
solution,

#(x, y) = k sin2x e

21. Solve Laplace’s equation u_ + tw, =0 subject  to  the conditions
w(0, y)=u(l, y)=u(x,0)=0 and u(x, a) =sin {nx/1)
>> The befitting solution to solve the given problem is represented by
w(x, y) = (Acospx+Bsinpx) (Ce+De ¥ o (D
u(0,y)="0gves (A) (Ce+D¢Hy=0 . A=0
u(l, y) =0 gives (Bsinpl) (CeV+De ™) =0
Since A = 0, B cannotbe zero and we must have

sinpl =0 or pl =nnm . p=nn/i

HITY "y

T Cer +pe T

Now wu({x,y)=(Bsin 7

{x, 0) =0 gives Bsin :_'1_1;_x_ (C+D)Yy=20

Since B0, C+D=0orD=-C

ooy -y
We can now write, u{x, ¥) = BC sin EE;AE [ el — ¢l ]
iv., u(x, y)=2BC sin ﬂ%}: sin h H—TE
Putting # =1,2,3, ... and taking 2BC = b,, b,, b, - respectively and

adding we have,
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w(x,y)= S b sin "= sinh E;H )

— n I
H o= 1

Finally we consider u(x, a) = sin (nx/1)

aa

. Hmx nma
Now, u{x,a)= % bn sin ~7 o sinh /-~
n o=l
. , MX CMXx ., Ta L 2nx . 2ma
ie., smT = b1 smT sinh 0 + b2 sin sind 5 + -

Comparing both sides we have,

1
---------- by=0, by=0,...

bysinh(masl) =1 bl =

We substitute these values in the expanded form of (2).

Sinn—lx sinh -EIH
Thus (e w) = = Gy ety
2 2
22, Solve 2—3 + 3_1_21 =0 given that u(0,y)=0=u(l,y)=u(x,0) and
By

w(x, )= Ix — x*

>> [ This problem is similar to problem - 21. We need to retrace all the steps upto the
stage of getting equation (2) |

o

ﬁ?’[y_

uix,y)y= 3 b” sin ﬂ;_x_ sinlt T D

o=

Consider w{x, [} =Ix- 2

- LR T
Now u(x,1)= 3% b sin —j sin hnr
=1
; 2 e o ALY : _ .
ie., Ix-x" = 3% B sin ] where B, =1b sinftn

The series in R.H.S is regarded as the sine half range Fourier series of ( Ix - ¥ ) in
(0, 1) and hence we have,

|
j (f'x—xz) sin Tr dx
o

—|ta

Bn:

[Refer problem-33 of unit - I for the integration process)
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17
= 1_(_1)”
il ”,3“3
81° _ .
or B = _-;itn=1,3,5,... and B, =0ifn=2,4,6,...
" 3. 3 n
nwm
IZ
iLe., b sinfinmt = 53 when n=1,3,5,
i 3 3
am
8 12
g = — 5% where 1 = 1,3,5,...

sinhun-n"m
We substitute this value of & in (2).

oo ,1 5
Thus u(x’y) - % Y g sin nanx sinh nuy
" s-1.3,5,.. wsinhug ! I

D’ Alembert’s solution of the one dimensional wave equation
We have one dimensional wave equation
&% u 3 9 u
vl -(1)
o ox

[fn this method, the solufion w = u (x, t) is found by introducing two new varables v and
w interms of t thereby making u ( x, 1) a composite function. In other words u is considercd
a function of v and w where v and w are functions of x, t for computing the partial
derivatives by applying the chain rule |

Let v=x+4ct and w = x-ct
We treat i as a function of 7 and w which are functions of x and t.
By chain rule we have,

du _ o ov  du dw
dy  or ox dw Ix

dv diw

Since ¢ =x+¢f and w=x-cf, — =1 and - =1
dx dx
du  du ot o Ou
oS (14— (1Y = - S
dx do (1) ow th dr " diw
Now Tu_ @ (ow)_ 9 (du  du
©ow?  oxi{ox ] dxlde dw|
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Again by applying the chain rule we have,

Cu_ 9 () a9 (w o dw
dv dw dx  dw | de r]wJ dx

5 & Fu Fu  Pu
I R R CU RS PP

9 u O L9
* ox? kat}z " o an dwar  Jurt
3 u & u
But ———= 2.1
u dvdw  dwdv
2 2 -2 -2
J e a—;‘+2 gu L (2)
ax o ()IU dv du :2
Similarlv du  Jdu  dv N du g
i on_ou g on o
7’ ot dv  dt  dw oOf
dv d
Since ©v=x+c¢ and w = x—ct, g ¢ and —,Ig = —g
ot ot
I _dw oy B e Bu 9
ot oo o ¢ £ dr dw J

Again by applying the chain rule we have,

Fu_o(m) ol (o o)
ot ot ot | ao | | dr dw )]

0 3 u [ 8 u Pu | (c)4c O 82;:;—} (-¢)
) N =0 = - . T . o T . i 8
oF L gt dvdw | gw dr i’ ;
; 0% u 2 "y o u ‘ 2 ;'/ & u 9% \.
e, AL o _2u _2p e
at2 i\ ayz dr dw }I !\ dw dv awz J
Tu_ oBu_, du 5}2: \ .3)
a2 ol dwde gyt |
Substituting {(2) and (3} in (1) we have,
2 | 2% & u 9% u 2l 0% u Pu Fu|
c N 20—+ TS |=¢ -+ 2 "——+—"—‘2
ov dwov Gy ] du” dw ov - Gy
P Bu

=0

=0 or — =
di do

T owav
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We solve this PDE by direct integration, writing it in the form,

A
9 (% _y
dw | v
, . ot .
Integrating w.r.t w treating v as constant, we get, —— = f(7)

du
Now integrating w.r.tv, we get, u = Jf( vyde+G(w)
iv., =F(v)+G(w) where F(E?)=_[_f(i'))di.?

But v=x+cf and w = x-cf

Thus # = u(x, £} = F{x+ct)+G(x—ct)

This is the D’ Alembert’s solution of the one dimensional wave equation.

WORKED PROBLEMS

23, Obtain the D’Almbert’s solution of the wave equation u,,

By, 0)=0

conditionsu (x, 0) = f(x) and o
[

>> The D' Alembert’s solution of the wave equatijon is given by

u(x, t)=F{x+ct)+G(x~ct)
Consider u (x, 0) = f(x). Now (1) becomes
w(x, 0)y=F(x)+G(x)
ie., flx)=F(a)+G(x)

Differentiating (i) partially w.rt t we have,

%’-‘; (x, 8) = F’ (x+ct) (c)+G’ (x—ct)(-¢)
(

Now %(X,O):C[F'(x)—(}’(x)]

ie., 0=c[F'{x)-G ' (x)}

or F'(x)-G’'(x) =0. Integrating w.r.t x we have,
Fix)-G(x)=k

where k is the constant of integration.

By solving simultaneously the equations,

2 ;
¢ u,, subject to the

2

.(3)
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F{xy+G{(x)=f(x) (2
F(x)-G({x)y=k (3

we obtain, F(x) = ,1) [f(x)+k] and G(x) = ‘,12 [f(x)—-k]

F(x+ct) = ; [fix+ct)+k]andG(x—ct}) = ; [f(x—ct)—Kk]
Substituting these in (1) we have,

H(x, t)y=s[f(x+ct)+k] + % [f(x-ct)y-k]

B |

Thus the required solution is given by

24. Obtian the D" Alembert's solution of the one dimensional wave equation 1, = 2 "

giventhat ui{x, 0) = f(x) = P-xt and u (x, 0} = 0
>> [We can assume the D" Alembert’s solution and then retrace all the steps of problem-23]
uix, t)= % [f(x+cf]+f(x—cf)] and f{x) = fz—xz,bydata.
Ir p 2 2 2

ZL F—(x+ct)y + F—-({x-ct) ]

=S [2F -2 -2 ]

Thus u(x, t) = 12— - #¢?

25. Find the D" Alembert’s solution of the wave vquation u,, = ? i, subject to the
.. .2 o
conditions, u(x, 0) = a sin® mx and Yl 0 when £ =0
>> [We can assume the D" Alembert’s solution and  then retrace all the steps of problem-23]

Hix,t) = % {f{x+c!)+_f(x-—ct)}

By data f{x)zasinznx or f(x):-g-(]—coshx)
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Hix, t) =

i : :
2 5 [-l—cosh (x+ct)) + -1~c0521':(x—ct)!}

NP

[2—@(:05 (27X + 2mct ) + cos (2nx—27rct):-]

Z [2-2cos2nx - cos 2nct |

Thus u{(x, f) = g [1-cos 2nx - cos 2mct}

EXERCISES

i czuu under the conditions

(x,0)=0 and

1. Solve the wave equation u
du
0l
u(x,0) =asin{nx/) cos {(5mx/)

H(Q,ty=0=u(l,t},

2. Solve the wave equation u, = 4u _ subject to the conditions
(0, t) =0 =u(n, t),u,(x,0)=0 and u(x,0) = f(x)where,

Flx) = X in 0<x<m/2
' C|m-x in m2<x <7
3. Solve the wave equation u,, = c it given that

u(0,8)=0=u(l,t),u(x,0)=0 and
u (x,0) = sin3(fcx/f)

_ . u P
4, Given the wave equation — = £2 and the conditions u (x,0)=x{l-x)

ottt

0
and 8_L: (x,0) = 0, show that the D"Alembert’s solution of the problem is
u{x,t) = It - -

5. Solve the heat equation u, = 2 u,. giventhat (0,f) =0, u(x,t) =0 and

uix,0) =x(1‘c2—x2)
d
6. Solve % = 22;‘ with the boundary conditions u (0,¢) = 0, u(l,¢) = 0 and
X

u(x,0)=3sin(nnx)
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d
7. Solvethe BV.P.: u!.:czu_,{}SxSS, -_'—i-{-(O,t):O,
XA d:-t-
3—2(5,”:0 and w(x,0)=x

8. Solve the heat equation u, = 2 u . giventhatu (0,t) = 0,u(40,t) =0 and
uix,0)=2x+20

2 2

J
9, Solve the Laplace’s equation B_% + g
dx dy

u(0,y)=0 wu(n,y)=0, u(x,=)=0 and H(X,U)ZHU where

= 0 subject to the conditions.

O<x<m O<y<m
10. Solve un+uyy={] given that 4 (0,y) =0, u(10,y) =0, u{x,0) =0 and

H{x,10) = f(x)

[x in 0<x<5
where f(“"p()—xm 5<x<10
ANSWERS
aj . 6bnx 6wt R dmct
L u{x,t) =41 sin —— cos - sin -3 Cos -
2 ! { ! !
i 1
2 u{x,f)=i 3 , Sin ’."';E sin # x cos 2nt
n=1 H
3. u(x,t) = 3 sin nx sinn”—- ! 5in AL sianCt
CEE T g I “12em 0T !
E (_-l)ﬂ‘i'l _nz"zf
5. u(x,ty=12 3y —5——¢ """ sinnx
=1 H
e _ 22t
6. u(x,t)=3 3 ¢ T sin(nmx)
=1
5 1w = 1 ey g2 2
7ou(x, )=+ T -5 (=1)-1 MRV cos ZEX
2 Ho=1 - 5
_ w40 ni o —ww o600, NEX
8. u(x,t)= ,E:l ”n{l 5(-1):e sin 44
4u n
9. u(x,y)= TcU s %sjnnx e
n=1,3,3,
_ 40 = sin(hn/2) . HAmx . mNYy
0. u(x,y)=— g cnhnn 5™ 10 sin / 10



